History matching of simulation models

We demonstrate history matching of a Direct Column Breakthrough (DCB) simulation model in Mocca. We leverage the powerful and flexible optimization functionality of Jutul to set up and perform the history matching. For more details about the DCB modelling, see the Simulate DCB example.

Import necessary modules

import Jutul
import Mocca

We create a function for setting up new simulation cases from the value of the parameter we wish to tune

function setup_case(prm, step_info=missing)

    param_dict_symb = Dict(Symbol(k) => v for (k, v) in prm);
    RealT = valtype(param_dict_symb);
    constants, info = Mocca.parse_input(Mocca.haghpanah_DCB_input(); typeT=RealT)

    for (k, v) in param_dict_symb
        print(k)
        print(v)
        setproperty!(constants, Symbol(k), v)
    end
    case,  = Mocca.setup_mocca_case(constants, info)

    return case
end;

Create synthetic reference data

constants_ref, = Mocca.parse_input(Mocca.haghpanah_DCB_input(); typeT=Float64)

prm_ref = Dict("v_feed" => constants_ref.v_feed);
case_ref = setup_case(prm_ref);
v_feed0.37

Configure simulator which will be used in the history matching

timestep_selector_cfg = (y=0.01, Temperature=10.0, Pressure=10.0)
sim, cfg = Mocca.setup_process_simulator(case_ref.model, case_ref.state0, case_ref.parameters;
    timestep_selector_cfg = timestep_selector_cfg,
    initial_dt = 1.0,
    output_substates = true,
    info_level = -1
);

Run reference simulation to generate and generate "ground truth" data from the result

states, timesteps_out = Mocca.simulate_process(case_ref;
    simulator = sim,
    config = cfg
);

times_ref = cumsum(timesteps_out)
total_time = times_ref[end]
last_cell_idx = Jutul.number_of_cells(case_ref.model.domain)
qCO2_ref = map(s -> getindex(s[:AdsorbedConcentration], 1, last_cell_idx), states)
qCO2_ref_by_time = Jutul.get_1d_interpolator(times_ref, qCO2_ref);

Setting up and solving the optimization problem

We define a suitable objective function to quantify the match between our simulations and the reference solution. Here we choose deviation of adsorbed CO2 in the last grid cell.

function objective_function(model, state, dt, step_info, forces)
    current_time = step_info[:time]
    q_co2 = getindex(state[:AdsorbedConcentration], 1, last_cell_idx)
    q_co2_ref = qCO2_ref_by_time(current_time)
    v = dt/total_time*(q_co2 - q_co2_ref)^2
    return v
end;

Perturb the known parameter $v_{feed}$ to form our initial guess for the optimization

prm_guess = Dict("v_feed" => constants_ref.v_feed+0.2);

Activate $v_{feed}$ as a free parameter

dprm = Jutul.DictOptimization.DictParameters(prm_guess)
Jutul.DictOptimization.free_optimization_parameter!(dprm, "v_feed"; rel_min = 0.001, rel_max = 100.0)
DictParameters with 1 parameters (1 active), and 0 multipliers:
Active optimization parameters
┌────────┬───────────────┬───────┬─────────┬──────┐
│   Name  Initial value  Count      Min   Max │
├────────┼───────────────┼───────┼─────────┼──────┤
│ v_feed │ 0.57          │     1 │ 0.00057 │ 57.0 │
└────────┴───────────────┴───────┴─────────┴──────┘
No inactive optimization parameters.
No multipliers set.

Run the optimization

prm_opt = Jutul.DictOptimization.optimize(dprm, objective_function, setup_case;
    config = cfg,
    max_it = 10,
    obj_change_tol = 1e-6,
    solution_history = true
);
Optimization: Starting calibration of 1 parameters.
Optimization: Setting up adjoint storage.
Optimization: Finished setup in 6.141145949 seconds.
Optimization: Adjoint solve took 3.576014125 seconds.

Optimization: Objective #1: 7.61286e+05, gradient 2-norm: 4.71893e+06
It.  | Objective  | Proj. grad | Linesearch-its
-----------------------------------------------
   0 | 1.6133e-01 | 5.6999e+01 | -
Optimization: Adjoint solve took 0.238662729 seconds.

Optimization: Objective #2: 6.36994e+06 (f/f0=8.367e+00), gradient 2-norm: 1.05288e-04
Optimization: Adjoint solve took 2.850472895 seconds.

Optimization: Objective #3: 6.05491e+05 (f/f0=7.954e-01), gradient 2-norm: 5.00075e+06
Optimization: Adjoint solve took 3.19391391 seconds.

Optimization: Objective #4: 1.24529e+06 (f/f0=1.636e+00), gradient 2-norm: 6.30573e+06
Optimization: Adjoint solve took 2.801594202 seconds.

Optimization: Objective #5: 1.60276e+05 (f/f0=2.105e-01), gradient 2-norm: 4.25403e+06
Optimization: Adjoint solve took 0.237465887 seconds.

Optimization: Objective #6: 6.36994e+06 (f/f0=8.367e+00), gradient 2-norm: 1.05288e-04
LBFGS: Line search unable to succeed in 5 iterations ...
Optimization: Adjoint solve took 2.794055711 seconds.

Optimization: Objective #7: 1.60276e+05 (f/f0=2.105e-01), gradient 2-norm: 4.25403e+06
LBFGS: Resetting 'm' to number of parameters: m = 1
   1 | 3.3964e-02 | 5.6999e+01 | 5
Optimization: Adjoint solve took 0.241104706 seconds.

Optimization: Objective #8: 6.36994e+06 (f/f0=8.367e+00), gradient 2-norm: 1.05288e-04
Optimization: Adjoint solve took 2.835251542 seconds.

Optimization: Objective #9: 9.17200e+04 (f/f0=1.205e-01), gradient 2-norm: 3.55824e+06
   2 | 1.9437e-02 | 5.1384e+01 | 2
Optimization: Adjoint solve took 2.835338392 seconds.

Optimization: Objective #10: 1.56515e+05 (f/f0=2.056e-01), gradient 2-norm: 6.37615e+06
Optimization: Adjoint solve took 2.80589466 seconds.

Optimization: Objective #11: 5.98917e+01 (f/f0=7.867e-05), gradient 2-norm: 1.18220e+05
   3 | 1.2692e-05 | 4.2980e+01 | 2
Optimization: Adjoint solve took 2.827473281 seconds.

Optimization: Objective #12: 1.30250e+01 (f/f0=1.711e-05), gradient 2-norm: 4.91360e+04
   4 | 2.7602e-06 | 1.4280e+00 | 1
Optimization: Adjoint solve took 2.813433426 seconds.

Optimization: Objective #13: 4.89064e-01 (f/f0=6.424e-07), gradient 2-norm: 1.02865e+04
   5 | 1.0364e-07 | 5.9351e-01 | 1
Optimization: Adjoint solve took 2.795522387 seconds.

Optimization: Objective #14: 1.31567e-02 (f/f0=1.728e-08), gradient 2-norm: 1.63327e+03
   6 | 2.7881e-09 | 1.2425e-01 | 1
Optimization: Finished in 58.180815891 seconds.

We can see a clear reduction of the objective function value throughout the optimization iterations, indicating a close match between the reference solution and our simulation.

f = Mocca.plot_optimization_history(dprm)
Example block output

We can look at the optimization result:

dprm
DictParameters with 1 parameters (1 active), and 0 multipliers:
Active optimization parameters
┌────────┬───────────────┬───────┬─────────┬──────┬─────────────────┬────────┐
│   Name  Initial value  Count      Min   Max  Optimized value  Change │
├────────┼───────────────┼───────┼─────────┼──────┼─────────────────┼────────┤
│ v_feed │ 0.57          │     1 │ 0.00057 │ 57.0 │ 0.37            │ -35.0% │
└────────┴───────────────┴───────┴─────────┴──────┴─────────────────┴────────┘
No inactive optimization parameters.
No multipliers set.

and see that the value matches the reference parameter value

constants_ref.v_feed
0.37

Check size of objective mismatch

dprm.history.objectives
14-element Vector{Float64}:
 761285.8833487191
      6.369944548281314e6
 605490.5988906717
      1.2452850486862871e6
 160276.1654342885
      6.369944548281314e6
 160276.1654342885
      6.369944548281314e6
  91720.04717427617
 156514.61414672225
     59.89165092406765
     13.02496997446219
      0.48906387396649426
      0.013156736999161563

Example on GitHub

If you would like to run this example yourself, it can be downloaded from the Mocca.jl GitHub repository.


This page was generated using Literate.jl.